
Building a Reliable Software
Infrastructure for Scientific

Computing

Osni Marques
Lawrence Berkeley National Laboratory (LBNL)

oamarques@lbl.gov

UC Berkeley - CS267

03/31/2004UC Berkeley - CS267 2

Outline

• Keeping the pace with the software and hardware
• Hardware evolution
• Performance tuning
• Software selection
• What is missing?

• The DOE ACTS Collection Project
• Goals
• Related activities
• Current features
• Lessons learned

03/31/2004UC Berkeley - CS267 3

Two Applications: Ax=λx

Simplified model of the “Namorado” steel
jacket platform, 170 meters water depth,
2463 degrees of freedom, ω1=1.71rad/s.

Simplified model of the
maltodextrin protein (370 residues)

using the RTB method.

03/31/2004UC Berkeley - CS267 4

Singular Value Decomposition (SVD)

2

2

σ=λλ=
σ=λλ=

σ±=λ








λ=
















,)(
,)(

,
0

0

vvAA
uuAA

v
u

v
u

A
A

T

T

T

Algorithms:

• Dense matrices: LAPACK, ScaLAPACK,…
• Sparse matrices: Subspaces, Lanzos,…

SVD and eigenvalues:

Applications:
• Digital signal processing
• Protein substate modeling and identification
• Spectrum analysis
• Model reduction
• Fuzzy and neural systems
• Data compression
• Inverse problems
• Information retrieval

�

http://www-bioc.rice.edu/~tromo

03/31/2004UC Berkeley - CS267 5

Two SVD Applications

http://www.cs.utk.edu/~lsi/

• Data: travel times of sound waves generated
by earthquakes used to infer structure in the
entire Earth (crust, mantle and core).

• Goal: model for the internal structure of the
Earth.

• More than 1x106 data points and 2x105

parameters.

l

l
l

ijkl

l
l

ijkl
ik

l
l

ijkl
j

l
l

ijkl
k

l
l

ijk
ijk a

n

a
t

b
n

b
t

s
n

s
t

h
v
tn

v
t

t
absD

δδδδδδ ∑∑∑∑∑
===== ∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
11111

43

v

03/31/2004UC Berkeley - CS267 6

Computing Y=(ATA)X in Parallel

• One processor reads A (by rows) and sends the data to
other processors

• A is stored by means of 3 arrays:
• one (integer) array stores the number of nonzero

entries in each row
• one (integer) array stores the column indices
• one (real) array stores the corresponding entries

• A redistribution of A is performed so as each processor
contains roughly the same number of entries

• A quick sort is applied to the indices to prevent cache
misses

12

block sizetime

26.3%24.5%20.0%21.4%18.3%eigenvectors

13.2%13.1%15.0%16.4%19.7%reduced problem (T)

7.1%7.7%8.1%11.5%12.2%reorthogonalization

0.8%0.4%0.3%0.2%0.1%basis generation

52.6%
(289)

54.3%
(352)

53.5%
(460)

50.5%
(671)

49.6%
(1293)

(ATA)x

11701100111011901270total (s)

54321

Model of dimension 846968 by 96300, 28587210 nonzeros,
k=500, nvb=1 to 5, tol=10-6, 32 processors (Cray T3E 900).

• Requires only products of the form
• Generates a basis through

a simple three-term recurrence
• The projection of is a symmetric

tridiagonal matrix (of dimension j << n)
• The solutions of together with

lead to approximate solutions of

Hqr =
][21 jqqqQ �=

QH into

sTs θ= Q
),(xλ

T

vvAAT λ=)(:Lanczos

03/31/2004UC Berkeley - CS267 7

High Performance Computers (Sustainable Performance)

• ~ 20 years ago →→→→ 1x106 Floating Point Ops/sec (Mflop/s)
• Scalar based

• ~ 10 years ago →→→→ 1x109 Floating Point Ops/sec (Gflop/s)
• Vector & Shared memory computing, bandwidth aware
• Block partitioned, latency tolerant

• ~ Today →→→→ 1x1012 Floating Point Ops/sec (Tflop/s)
• Highly parallel, distributed processing, message passing, network based
• data decomposition, communication/computation

• ~ 10 years away →→→→ 1x1015 Floating Point Ops/sec (Pflop/s)
• Many more levels of memory hierarchy, combination of grids&HPC
• More adaptive, latency and bandwidth aware, fault tolerant, extended

precision, attention to SMP nodes

• ~ 20 years ago →→→→ 1x106 Floating Point Ops/sec (Mflop/s)
• Scalar based

• ~ 10 years ago →→→→ 1x109 Floating Point Ops/sec (Gflop/s)
• Vector & Shared memory computing, bandwidth aware
• Block partitioned, latency tolerant

• ~ Today →→→→ 1x1012 Floating Point Ops/sec (Tflop/s)
• Highly parallel, distributed processing, message passing, network based
• data decomposition, communication/computation

• ~ 10 years away →→→→ 1x1015 Floating Point Ops/sec (Pflop/s)
• Many more levels of memory hierarchy, combination of grids&HPC
• More adaptive, latency and bandwidth aware, fault tolerant, extended

precision, attention to SMP nodes

03/31/2004UC Berkeley - CS267 8

Architectures

Single
Processor

SMP

MPP

SIMD

Constellation

Cluster - NOW

0

100

200

300

400

500
Jun-93
Nov-93
Jun-94
Nov-94
Jun-95
Nov-95
Jun-96
Nov-96
Jun-97
Nov-97
Jun-98
Nov-98
Jun-99
Nov-99
Jun-00
Nov-00
Jun-01

Y-MP C90

Sun HPC

Paragon

CM5
T3D

T3E

SP2

Cluster of
Sun HPC

ASCI Red

CM2

VP500

SX3

03/31/2004UC Berkeley - CS267 9

Why do we need these tools?

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• More code development in
less time!

• More simulation in less
computer time!

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• More code development in
less time!

• More simulation in less
computer time!A computation that took 1 full year to complete in

1980 could be done in ~ 10 hours in 1992, in ~ 16
minutes in 1997 and in ~ 27 seconds in 2001!

G
Fl

op
/s

2001

ASCI White
Pacific
(7424)

ASCI Blue
Pacific SST

(5808)
SGI ASCI

Blue
Mountain

(5040)

Intel
ASCI Red

(9152)
Hitachi

CP-PACS
(2040)

Intel
Paragon
(6788)

Fujitsu
VPP-500

(140)

TMC
CM-5
(1024)

NEC
SX-3
(4)

TMC
CM-2
(2048)

Fujitsu
VP-2600

Cray
Y-MP (8)

Intel ASCI
Red Xeon

(9632)

0

1000

2000

3000

4000

5000

6000

7000

1990 1992 1994 1996 1998 2000
Year

1992

1997

Rank Manufacturer Computer
Rmax

[TF/s]
Installation Site Country Year Area of

Installation # Proc

1 NEC Earth-Simulator 35.86 Earth Simulator Center Japan 2002 Research 5120

2 HP ASCI Q,
AlphaServer SC 13.88 Los Alamos

National Laboratory USA 2002 Research 8192

3 Linux NetworX MCR Linux
Cluster Xeon 7.63 Lawrence Livermore

National Laboratory USA 2002 Research 2304

4 IBM ASCI White
SP Power3 7.30 Lawrence Livermore

National Laboratory USA 2000 Research 8192

5 IBM SP Power3 7.30 NERSC/LBNL USA 2002 Research 6656

Top 5 Machines:
http://www.top500.org

(June 2003)

Top 5 Machines:
http://www.top500.org

(June 2003)

03/31/2004UC Berkeley - CS267 10

Automatic Tuning

• For each kernel
1. Identify and generate a space of

algorithms
2. Search for the fastest one, by running

them
• What is a space of algorithms?

• Depending on kernel and input, may
vary

• instruction mix and order
• memory access patterns
• data structures
• mathematical formulation

• When do we search?
• Once per kernel and architecture
• At compile time
• At run time
• All of the above

• PHiPAC:
www.icsi.berkeley.edu/~bilmes/phipac

• ATLAS:
www.netlib.org/atlas

• XBLAS:
www.nersc.gov/~xiaoye/XBLAS

• Sparsity: www.cs.berkeley.edu/~yelick/sparsity
• FFTs and Signal Processing

• FFTW: www.fftw.org
• Won 1999 Wilkinson Prize for

Numerical Software
• SPIRAL: www.ece.cmu.edu/~spiral

• Extensions to other transforms, DSPs
• UHFFT

• Extensions to higher dimension,
parallelism

03/31/2004UC Berkeley - CS267 11

Tuning pays off!

C A B= *Example: PHiPAC ⇒

03/31/2004UC Berkeley - CS267 12

What About Software Selection?

• Use a direct solver (A=LU) if
• Time and storage space acceptable
• Iterative methods don’t converge
• Many b’s for same A

• Criteria for choosing a direct solver
• Symmetric positive definite (SPD)
• Symmetric
• Symmetric-pattern
• Unsymmetric

• Row/column ordering schemes available
• MMD, AMD, ND, graph partitioning

• Hardware

bAx = :Example

Build a preconditioning matrix K such that
Kx=b is much easier to solve than Ax=b and
K is somehow “close” to A (incomplete LU
decompositions, sparse approximate
inverses, polynomial preconditioners,
preconditioning by blocks or domains,
element-by-element, etc). See Templates for
the Solution of Linear Systems: Building
Blocks for Iterative Methods.

03/31/2004UC Berkeley - CS267 13

Bugs…
On February 25, 1991, during the Gulf
War, an American Patriot Missile
battery in Dharan, Saudi Arabia, failed
to track and intercept an incoming
Iraqi Scud missile. The Scud struck an
American Army barracks, killing 28
soldiers and injuring around 100 other
people. The problem was an inaccurate
calculation of the time since boot due
to computer arithmetic errors.

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

On June 4, 1996, an Ariane 5 rocket launched by the European Space
Agency exploded just forty seconds after its lift-off from Kourou, French
Guiana. The rocket was on its first voyage, after a decade of
development costing $7 billion. The problem was a software error in the
inertial reference system. Specifically a 64 bit floating point number
relating to the horizontal velocity of the rocket with respect to the
platform was converted to a 16 bit signed integer.

On August 23,1991, he first concrete base structure
for the Sleipner A platform sprang a leak and sank
under a controlled ballasting operation during
preparation for deck mating in Gandsfjorden outside
Stavanger, Norway. The post accident investigation
traced the error to inaccurate finite element
approximation of the linear elastic model of the tricell
(using the popular finite element program NASTRAN).
The shear stresses were underestimated by 47%
leading to insufficient design. In particular, certain
concrete walls were not thick enough.

03/31/2004UC Berkeley - CS267 14

o

IF(Z(J4-2).EQ.ZERO) THEN
Z(J4) = ZERO
D = Z(J4+1)
DMIN = D
EMIN = ZERO

ELSE IF(SAFMIN*Z(J4+1).LT.Z(J4-2) .AND.
$ SAFMIN*Z(J4-2).LT.Z(J4+1)) THEN

TEMP = Z(J4+1) / Z(J4-2)
Z(J4) = Z(J4-1)*TEMP
D = D*TEMP

ELSE
Z(J4) = Z(J4+1)*(Z(J4-1) / Z(J4-2))
D = Z(J4+1)*(D / Z(J4-2))

END IF
o

Underflows and Performance of the dqds Algorithm

Performance of the dqds algorithm on a SUN Ultra 30 calling
xLASQ1 (blue) or xLASQ2 (red), multiplying the same input

data by two different scaling factors. Depending on the
scaling, a test with SAFMIN (see code to the left) led to a

large number of underflows (dealt with at software level and
greatly degrading the computational performance).

function xLASQ1

function xLASQ2

function xLASQ3

function xLASQ4

function xLASQ5

function xLASQ6

Data preprocessing

LAPACK: http://www.netlib.org/lapack

03/31/2004UC Berkeley - CS267 15

Challenges in the Development of Scientific Codes

• Productivity
• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Model coupling
• Interdisciplinarity

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

• Productivity
• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Model coupling
• Interdisciplinarity

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

• Libraries written in different languages.
• Discussions about standardizing

interfaces are often sidetracked into
implementation issues.

• Difficulties managing multiple libraries
developed by third-parties.

• Need to use more than one language in
one application.

• The code is long-lived and different
pieces evolve at different rates

• Swapping competing implementations of
the same idea and testing without
modifying the code

• Need to compose an application with
some other(s) that were not originally
designed to be combined

• Libraries written in different languages.
• Discussions about standardizing

interfaces are often sidetracked into
implementation issues.

• Difficulties managing multiple libraries
developed by third-parties.

• Need to use more than one language in
one application.

• The code is long-lived and different
pieces evolve at different rates

• Swapping competing implementations of
the same idea and testing without
modifying the code

• Need to compose an application with
some other(s) that were not originally
designed to be combined

03/31/2004UC Berkeley - CS267 16

Components: simple example

)
2

()(
1

1∑∫
=

− +−≈
n

j

jj
b

a

xx
f

n
abdxxf

a b
x

)(xf

Numerical integration: midpoint










−
≈ ∑∫

=

N

i
n

b

a

xf
Nab

dxxf
1

)(11)(

Numerical integration: Monte Carlo

a b

)(xf

x

xxf 2)(2 =

2
1)(xxf =

23 1
4)(
x

xf
+

=

03/31/2004UC Berkeley - CS267 17

The Reality…

• The development of complex simulation codes on parallel
computers is not a trivial task.

• Usually, a significant percentage of the efforts focus on the
development of the codes and their optimization.

• There is a need for a collaboration framework for ongoing
development and deployment of computational tools.

• In 1999, the PITAC Report recommended the creation of a
national library of certified domain-specific software in order
to reduce the labor required for software development,
testing and evolution.

• Research in computational sciences is fundamentally
interdisciplinary and addresses, among many others, climate
and environment modeling, DNA sequencing, flows in
geological structures, etc.

• The development of complex simulation codes on parallel
computers is not a trivial task.

• Usually, a significant percentage of the efforts focus on the
development of the codes and their optimization.

• There is a need for a collaboration framework for ongoing
development and deployment of computational tools.

• In 1999, the PITAC Report recommended the creation of a
national library of certified domain-specific software in order
to reduce the labor required for software development,
testing and evolution.

• Research in computational sciences is fundamentally
interdisciplinary and addresses, among many others, climate
and environment modeling, DNA sequencing, flows in
geological structures, etc.

03/31/2004UC Berkeley - CS267 18

What is the ACTS Collection?

• Advanced CompuTational Software Collection
• Tools for developing parallel applications
• ACTS started as an “umbrella” project

http://acts.nersc.gov

Goals
� Extended support for experimental software

� Make ACTS tools available on DOE computers

� Provide technical support (acts-support@nersc.gov)

� Maintain ACTS information center (http://acts.nersc.gov)

� Coordinate efforts with other supercomputing centers

� Enable large scale scientific applications

� Educate and train

03/31/2004UC Berkeley - CS267 19

ACTS: levels of support

• High
• Intermediate level
• Tool expertise
• Conduct tutorials

• Intermediate
• Basic level
• Provide a higher level of support to users of the tool
• Basic

• Basic knowledge of the tools
• Help with installation
• Compilation of user’s reports (acts-support@nersc.gov)

03/31/2004UC Berkeley - CS267 20

ACTS Tools Functionalities

Extensible implementation of the expression template technique (C++ technique for passing expressions as function
arguments).

PETE

Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers.ATLAS and PHiPAC
Library

Development

Set of tools for analyzing the performance of C, C++, Fortran and Java programs.TAU

Tools and run-time support for building easy-to-use external interfaces to existing numerical codes.SILOON

Framework for coupling parallel applications within a component-like model.PAWS

Services for the creation of computational Grids and tools with which applications can be developed to access the Grid.Globus

Framework that enables programmers to incorporate fault-tolerance, interactive visualization and computational steering
into existing parallel programs

CUMULVS

Code Execution

Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries.Overture

Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-
memory view of distributed arrays.

Global Arrays
Code Development

General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.SuperLU

Library of high performance dense linear algebra routines for distributed-memory message-passing.ScaLAPACK

Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-
algebraic equations.

SUNDIALS

Object-oriented nonlinear optimization package.OPT++

Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations.PETSc

Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic
configuration of parameters.

Hypre

Algorithms for the iterative solution of large sparse linear systems.Aztec

Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained
optimization, and general nonlinear optimization.

TAO

Numerical

FunctionalitiesToolCategory

�

ODEs
PDEs

TVUA
zAz

bAx

Σ=
=
=

λ

03/31/2004UC Berkeley - CS267 21

Use of ACTS Tools

Finite Differences
Finite Elements

Boundary Elements
Fourier

����

continuous problem discrete problem

grid

Model of a "hard" sphere included in
a "soft" material, 26 million d.o.f.
(Adams and Demmel, Prometheus

and PETSc, unstructured meshes in
solid mechanics).

3D overlapping grid for a
submarine produced with
Overture’s module ogen.

�

2

2

2

2

)(

x
v

x
vv

t
v

tfkx
dt
dxc

dt
xdm

∂
∂Γ+

∂
∂−=

∂
∂

=++

A=

(sparse matrix)

Multiphase flow using PETSc, 4 million cell
blocks, 32 million DOF, over 10.6 Gflops on
an IBM SP (128 nodes), entire simulation
runs in less than 30 minutes (Pope, Gropp,

Morgan, Seperhrnoori, Smith and Wheeler).

03/31/2004UC Berkeley - CS267 22

Use of ACTS Tools

Induced current (white arrows) and charge density
(colored plane and gray surface) in crystallized glycine

due to an external field (Louie, Yoon, Pfrommer and
Canning), eigenvalue problems solved with ScaLAPACK.

OPT++ is used in protein energy
minimization problems (shown here is
protein T162 from CASP5, courtesy

of Meza , Oliva et al.)

Omega3P is a parallel distributed-memory code intended for the
modeling and analysis of accelerator cavities, which requires the solution

of generalized eigenvalue problems. A parallel exact shift-invert
eigensolver based on PARPACK and SuperLU has allowed for the solution

of a problem of order 7.5 million with 304 million nonzeros. Finding 10
eigenvalues requires about 2.5 hours on 24 processors of an IBM SP.

Two ScaLAPACK routines,
PZGETRF and PZGETRS, are
used for solution of linear
systems in the spectral
algorithms based AORSA
code (Batchelor et al.),
which is intended for the
study of electromagnetic
wave-plasma interactions.
The code reaches 68% of
peak performance on 1936
processors of an IBM SP.

03/31/2004UC Berkeley - CS267 23

Cosmic Microwave Background (CMB) Analysis
• The statistics of the tiny variations in the CMB (the faint echo of

the Big Bang) allows the determination of the fundamental
parameters of cosmology to the percent level or better.

• MADCAP (Microwave Anisotropy Dataset Computational
Analysis Package)

• Makes maps from observations of the CMB and then calculates their
angular power spectra. (See http://crd.lbl.gov/~borrill).

• Calculations are dominated by the solution of linear systems of the
form M=A-1B for dense nxn matrices A and B scaling as O(n3) in flops.
MADCAP uses ScaLAPACK for those calculations.

• On the NERSC Cray T3E (original code):
• Cholesky factorization and triangular solve.
• Typically reached 70-80% peak performance.
• Solution of systems with n ~ 104 using tens of processors.
• The results demonstrated that the Universe is spatially flat, comprising

70% dark energy, 25% dark matter, and only 5% ordinary matter.
• On the NERSC IBM SP:

• Porting was trivial but tests showed only 20-30% peak performance.
• Code rewritten to use triangular matrix inversion and triangular matrix

multiplication � one-day work
• Performance increased to 50-60% peak.
• Solution of previously intractable systems with n ~ 105 using hundreds

of processors.

The international
BOOMERanG collaboration
announced results of the
most detailed measurement
of the cosmic microwave
background radiation (CMB),
which strongly indicated
that the universe is flat
(Apr. 27, 2000).

03/31/2004UC Berkeley - CS267 24

ScaLAPACK: software structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Clarity,modularity, performance
and portability. Atlas can be

used here for automatic tuning.

Clarity,modularity, performance
and portability. Atlas can be

used here for automatic tuning.

Linear systems, least
squares, singular

value decomposition,
eigenvalues.

Linear systems, least
squares, singular

value decomposition,
eigenvalues.

Communication
routines targeting

linear algebra
operations.

Communication
routines targeting

linear algebra
operations.

Parallel BLAS.Parallel BLAS.

Communication layer
(message passing).

Communication layer
(message passing).

http://acts.nersc.gov/scalapack

03/31/2004UC Berkeley - CS267 25

BLAS

• Clarity: code is shorter and easier to
read.

• Modularity: gives programmer larger
building blocks.

• Performance: manufacturers
(usually) provide tuned machine-
specific BLAS.

• Portability: machine dependencies
are confined to the BLAS.

• Key to high performance: effective
use of memory hierarchy (true on all
architectures).

(Basic Linear Algebra Subroutines)

0

50

100

150

200

250

10 100 200 300 400 500
order of vector/matrices

M
flo

p/
s

Level 3 BLAS

Level 2 BLAS

Level 1 BLASPe
rf

or
m

an
ce

• Level 1 BLAS: vector-vector operations.
• Level 2 BLAS: matrix-vector operations.
• Level 3 BLAS: matrix-matrix operations.

Development of blocked
algorithms (BLAS 3) is

important for performance!

Development of blocked
algorithms (BLAS 3) is

important for performance!

03/31/2004UC Berkeley - CS267 26

LAPACK

• Linear Algebra library written in Fortran 77 (Fortran 90, C and C++
versions also available).

• Combine algorithms from LINPACK and EISPACK into a single
package.

• Efficient on a wide range of computers (RISC, Vector, SMPs).
• User interface similar to LINPACK (Single, Double, Complex,

Double Complex).
• Built atop level 1, 2, and 3 BLAS for high performance, clarity,

modularity and portability.

(http://www.netlib.org/lapack)

• Basic problems:
• Linear systems:
• Least squares:
• Singular value decomposition:
• Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured
problems or general sparse matrices

bAx =

2
min bAx −

TVUA Σ=
BzAzzAz λλ == ,

03/31/2004UC Berkeley - CS267 27

BLACS

• A design tool, they are a conceptual aid in design and
coding.

• Associate widely recognized mnemonic names with
communication operations. This improves:
• program readability
• self-documenting quality of the code.

• Promote efficiency by identifying frequently occurring
operations of linear algebra which can be optimized on
various computers.

(Basic Linear Algebra Communication Subroutines)

03/31/2004UC Berkeley - CS267 28

BLACS: basics

• Processes are embedded in a two-dimensional grid.

Example: a 3x4 grid

• An operation which involves more than one sender and
one receiver is called a scoped operation.

10 32

0

0

1 2 3

54 76

98 1110

1

2

Scope Meaning
Row All processes in a process row participate.
Column All processes in a process column participate.
All All processes in the process grid participate.

03/31/2004UC Berkeley - CS267 29

* Get system information

CALL BLACS_PINFO(IAM, NPROCS)

* If underlying system needs additional setup, do it now

IF(NPROCS.LT.1) THEN

IF(IAM.EQ.0) NPROCS = 4

CALL BLACS_SETUP(IAM, NPROCS)

END IF

* Get default system context

CALL BLACS_GET(0, 0, ICTXT)

oooo

* Define 1 x (NPROCS/2+1) process grid

NPROW = 1

NPCOL = NPROCS / 2 + 1

CALL BLACS_GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

* If I’m not in the grid, go to end of program

IF(MYROW.NE.-1) THEN
IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)
ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN

CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)
END IF

oooo

CALL BLACS_GRIDEXIT(ICTXT)

END IF

CALL BLACS_EXIT(0)

END

BLACS: example

(in) uniquely identifies each process
(in) number of processes available
(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

(output) process row
and column coordinate

See http://www.netlib. org/blacs
for more information.

(out) uniquely identifies each process
(out) number of processes available

• The BLACS context is the
BLACS mechanism for
partitioning communication
space.

• A message in a context cannot
be sent or received in another
context.

• The context allows the user to
• create arbitrary groups of

processes
• create multiple

overlapping and/or disjoint
grids

• isolate each process grid so
that grids do not interfere
with each other

• BLACS context ⇔⇔⇔⇔ MPI
communicator

send X to process (1,0)

receive X from process (0,0)

leave context

exit from the BLACS

03/31/2004UC Berkeley - CS267 30

PBLAS

• Similar to the BLAS in portability, functionality and naming.
• Built atop the BLAS and BLACS
• Provide global view of matrix

CALL DGEXXX(M, N, A(IA, JA), LDA, ...)

CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...)

BLAS

PBLAS

(Parallel Basic Linear Algebra Subroutines)

Array descriptor
(see next slides)

Array descriptor
(see next slides)

03/31/2004UC Berkeley - CS267 31

PBLAS: levels and view of the operands

• Levels:
• Level 1: vector-vector operations.
• Level 2: matrix-vector operations.
• Level 3: matrix-matrix operations.

• Global view of the matrix operands, allowing global
addressing of distributed matrices (hiding complex
local indexing)

A(IA:IA+M-1,JA:JA+N-1)

JA

IA

N_

N

MM_

03/31/2004UC Berkeley - CS267 32

ScaLAPACK: goals

• Efficiency
• Optimized computation and communication engines
• Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
• Whenever possible, use LAPACK algorithms and error bounds

• Scalability
• As the problem size and number of processors grow
• Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
• Isolate machine dependencies to BLAS and the BLACS

• Flexibility
• Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
• Calling interface similar to LAPACK

03/31/2004UC Berkeley - CS267 33

ScaLAPACK: data layouts

• 1D block and cyclic column distributions

• 1D block-cycle column and 2D block-cyclic distribution
• 2D block-cyclic used in ScaLAPACK for dense matrices

03/31/2004UC Berkeley - CS267 34

ScaLAPACK: 2D Block-Cyclic Distribution

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0 1

2 3

03/31/2004UC Berkeley - CS267 35

2D Block-Cyclic Distribution























−−−−
−−−

−−
−

5.54.53.52.51.5
5.44.43.42.41.4
5.34.33.32.31.3
5.24.23.22.21.2
5.14.13.12.11.1 oooo

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;

ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN
A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
A(1) = -3.1; A(2) = -4.1;
A(1+LDA) = -3.2; A(2+LDA) = -4.2;
A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.1) THEN
A(1) = 3.3; A(2) = -4.3;
A(1+LDA) = 3.4; A(2+LDA) = 4.4;

END IF
oooo

CALL PDGESVD(JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
INFO)

oooo

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

0 1

2 3

0 1

0

1

LDA is the leading
dimension of the local
array (see next slides)

LDA is the leading
dimension of the local
array (see next slides)

Array descriptor for A
(see next slides)

Array descriptor for A
(see next slides)

03/31/2004UC Berkeley - CS267 36

ScaLAPACK: array descriptors

• Each global data object is assigned an array descriptor.
• The array descriptor:

• Contains information required to establish mapping between a
global array entry and its corresponding process and memory location
(uses concept of BLACS context).

• Is differentiated by the DTYPE_ (first entry) in the descriptor.
• Provides a flexible framework to easily specify additional data

distributions or matrix types.

• User must distribute all global arrays prior to the invocation
of a ScaLAPACK routine, for example:
• Each process generates its own submatrix.
• One processor reads the matrix from a file and send pieces to other

processors (may require message-passing for this).

03/31/2004UC Berkeley - CS267 37

Array Descriptor for Dense Matrices

DESC_() Symbolic Name Scope Definition

1
2
3
4
5

6

7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A

NB_A

RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)

(global)

(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACScontext handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of
array A.
Blocking factor used to distribute the columns
of array A.
Process row over which the first row of the
array A is distributed.
Process column over which the first column of
the array A is distributed.
Leading dimension of the local array.

03/31/2004UC Berkeley - CS267 38

Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

1

2
3
4

5

6

7

DTYPE_A

CTXT_A
N_A
NB_A

CSRC_A

LLD_A

−−−−

(global)

(global)
(global)
(global)

(global)

(local)

−−−−

Descriptor type DTYPE_A=501 for 1 x Pc process
grid for band and tridi agonal matrices block-column
distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of
array A.
Process column over which the first column of the
array A is distributed.
Leading dimension of the local array. For the
tridiagonal subroutines, this entry is ignored.
Unused, reserved.

03/31/2004UC Berkeley - CS267 39

Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B

−−−−

(global)

(global)
(global)
(global)
(global)

(local)

−−−−

Descriptor type DTYPE_B=502 for Pr x 1 process grid
for block -row distributed matrices .
BLACS context handle.
Number of rows in global array B
Blocking factor used to distribute the rows of array B.
Process row over which the first row of the array B is
distributed.
Leading dimension of the local array. For the
tridiagonal subroutines, this entry is i gnored.
Unused, reserved.

03/31/2004UC Berkeley - CS267 40

ScaLAPACK: Functionality

xx
x
x

xLeast Squares
GQR
GRQ

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx

xxxx
xxxx
xxxx

Symmetric
General
Generalized BSPD
SVD

SolutionReductionExpert
Driver

Simple
Driver

Ax = λλλλx or Ax = λλλλBx

xxxx
x
x

x
x
x

xx
x
x

General
General Banded
General Tridiagonal

xxxx
x
x

x
x
x

xx
x
x

SPD
SPD Banded
SPD Tridiagonal

xxxxTriangular

Iterative
Refinement

Conditioning
Estimator

InversionSolveFactorExpert
Driver

Simple
Driver

Ax = b

03/31/2004UC Berkeley - CS267 41

ScaLAPACK: Performance

• The algorithms implemented in ScaLAPACK are scalable in the sense
that the parallel efficiency is an increasing function of N2/P (problem
size per node).

• Maintaining memory use per node constant allows efficiency to be
maintained (in practice, a slight degradation is acceptable).

• Use efficient machine-specific BLAS (not the Fortran 77 source code available
in http://www.netlib.gov) and BLACS (nondebug installation).

• On a distributed-memory computer:
• Use the right number of processors

• Rule of thumb: P=MxN/1,000,000 for an MxN matrix, which provides
a local matrix of size approximately 1000-by-1000.

• Do not try to solve a small problem on too many processors.
• Do not exceed the physical memory.

• Use an efficient data distribution.
• Block size (i.e., MB,NB) = 64.
• Square processor grid: Prow = Pcolumn.

On line tutorial: http://acts.nersc.gov/scalapack/hands-on/main.html

03/31/2004UC Berkeley - CS267 43

What about tuning and performance analysis?

• Profiling of Java, C++, C, and Fortran codes
• Detailed information (much more than prof/gprof)
• Profiles for each unique template instantiation
• Time spent exclusively and inclusively in each function
• Start/Stop timers
• Profiling data maintained for each thread, context, and node
• Parallel IO Statistics for the number of calls for each profiled function
• Profiling groups for organizing and controlling instrumentation
• Support for using CPU hardware counters (PAPI)
• Graphic display for parallel profiling data
• Graphical display of profiling results (built-in viewers, interface to Vampir)

• Profiling of Java, C++, C, and Fortran codes
• Detailed information (much more than prof/gprof)
• Profiles for each unique template instantiation
• Time spent exclusively and inclusively in each function
• Start/Stop timers
• Profiling data maintained for each thread, context, and node
• Parallel IO Statistics for the number of calls for each profiled function
• Profiling groups for organizing and controlling instrumentation
• Support for using CPU hardware counters (PAPI)
• Graphic display for parallel profiling data
• Graphical display of profiling results (built-in viewers, interface to Vampir)

TAUTAU
• COSY: COmpile manager Status displaY
• FANCY: File ANd Class displaY
• SPIFFY: Structured Programming Interface and

Fancy File displaY
• CAGEY: CAll Graph Extended displaY
• CLASSY: CLASS hierarchY browser
• RACY: Routine and data ACcess profile displaY
• SPEEDY: Speedup and Parallel Execution

Extrapolation DisplaY

• COSY: COmpile manager Status displaY
• FANCY: File ANd Class displaY
• SPIFFY: Structured Programming Interface and

Fancy File displaY
• CAGEY: CAll Graph Extended displaY
• CLASSY: CLASS hierarchY browser
• RACY: Routine and data ACcess profile displaY
• SPEEDY: Speedup and Parallel Execution

Extrapolation DisplaY

03/31/2004UC Berkeley - CS267 44

TAU: Example 1
PROGRAM PSGESVDRIVER
!
! Example Program solving Ax=b via ScaLAPACK routine PSGESV
!
! .. Parameters ..

!**** a bunch of things omitted for the sake of space ****

! .. Executable Statements ..
!
! INITIALIZE THE PROCESS GRID
!

integer profiler(2)
save profiler

call TAU_PROFILE_INIT()
call TAU_PROFILE_TIMER(profiler,'PSGESVDRIVER')
call TAU_PROFILE_START(profiler)
CALL SL_INIT(ICTXT, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

!**** a bunch of things omitted for the sake of space ****

CALL PSGESV(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, &
INFO)

!**** a bunch of things omitted for the sake of space ****

call TAU_PROFILE_STOP(profiler)
STOP
END

NB. ScaLAPACK routines have not been instrumented and
therefore are not shown in the charts.

03/31/2004UC Berkeley - CS267 45

TAU: Example 2

• EVH1 (Enhanced Virginia Hydrodynamics #1)
benchmark

• MPI code developed from VH1, based on the piece-
wise parabolic method (PPM) of Colella and Woodward

• PPM is a technique used for compressible, non-
turbulent hydrodynamics. It has been used in a
variety of astrophysical contexts, in addition to some
ideal gas computations and studies of convection

JRACY, time spent in each process.

JRACY, exclusive and inclusive level 1 data cache misses for
all routines (except PARABOLA), mean over 16 processors.

Visualizing TAU traces with Vampir, a commercial
trace visualization tool from Pallas, GmbH.

03/31/2004UC Berkeley - CS267 46

Why is ACTS unique?

• Provides pointers and documentation about software tools.
• Accumulates the expertise and user feedback on the use of

the software tools and scientific applications that used
them:
• independent software evaluations
• participation in the developer user groups e-mail list
• presentation of a gallery of applications
• leverage between tool developers and tool users
• workshops and tutorials
• tool classification
• support

03/31/2004UC Berkeley - CS267 47

Related Activities

• Software Repositories:
• Netlib: http://www.netlib.org
• HPC-Netlib: http://www.nhse.org/hpc-netlib
• National HPCC Software Exchange NHSE: http://www.nhse.org
• Guide to Available Mathematical Software: http://gams.nist.gov
• MGNet: http://www.mgnet.org
• NEOS: http://www-fp.mcs.anl.gov/otc/Guide
• OO Numerics: http://oonumerics.org/oon

• Portable timing routines, tools for debugging, compiler technologies:
• Ptools: http://www.ptools.org
• Center for Programming Models for Scalable Parallel Computing: http://www.pmodels.org

• Education:
• Computational Science Educational Project: http://csep1.phy.ornl.gov
• UCB’s Applications of Parallel Computers: http://www.cs.berkeley.edu/~demmel/cs267_Spr99
• MIT’s Applied Parallel Computing: http://www.mit.edu/~cly/18.337
• Dictionary of algorithms, data structures and related definitions: http://www.nist.gov/dads

03/31/2004UC Berkeley - CS267 48

Lessons Learned

• There is still a gap between tool developers and application
developers which leads to duplication of efforts.

• The tools currently included in the ACTS Collection should be
seen as dynamical configurable toolkits and should be grouped
into toolkits upon user/application demand.

• Users demand long-term support of the tools.
• Applications and users play an important role in making the tools

mature.
• Tools evolve or are superseded by other tools.
• There is a demand for tool interoperability and more uniformity

in the documentation and user interfaces.
• There is a need for an intelligent and dynamic catalog/repository

of high performance tools.

User Community

ACTS

Challenge Codes Computing Systems

Interoperability

Pool of
Software Tools

Testing and
Acceptance Phase

Collaboratories

Workshops and Training

Scientific Computing
Centers

Computer Vendors

Numerical SimulationsPhysics
ChemistryBiology

Medicine

Mathematics

Bioinformatics
Computer Sciences

Engineering

03/31/2004UC Berkeley - CS267 50

Who Benefits from these tools?

... More Applications …

http://acts.nersc.gov/AppMathttp://acts.nersc.gov/AppMat

Enabling sciences
and discoveries…

with
high performance
and scalability...

03/31/2004UC Berkeley - CS267 51

Scientific Computing – Third Pillar of Science

Subsurface
Transport

Many SC programs
need dramatic advances
in simulation capabilities

to meet their
mission goals

Health Effects,
Bioremediation

Combustion

Materials

Fusion Energy

Components
of Matter

Global
Climate

“a new way of doing science”

03/31/2004UC Berkeley - CS267 52

Addressing the Performance Gap through Software

Peak performance is skyrocketing
� In 1990s, peak performance

increased 100x; in 2000s, it will
increase 1000x

But
� Efficiency for many science

applications declined from 40-
50% on the vector
supercomputers of 1990s to as
little as 5-10% on parallel
supercomputers of today

Need research on
� Mathematical methods and

algorithms that achieve high
performance on a single
processor and scale to thousands
of processors

� More efficient programming
models for massively parallel
supercomputers

0.1

1

10

100

1,000

2000 2004

Te
ra

flo
ps

1996

Performance
Gap

Peak Performance

Real Performance

03/31/2004UC Berkeley - CS267 53

• Libraries written in different
languages.

• Different pieces of the code evolve at
different rates

• Swapping competing
implementations of the same idea and
testing without modifying the code

• Libraries written in different
languages.

• Different pieces of the code evolve at
different rates

• Swapping competing
implementations of the same idea and
testing without modifying the code

Challenges in the Development of Scientific Codes
• Productivity

• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Interdisciplinarity
• Model coupling

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

• Productivity
• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Interdisciplinarity
• Model coupling

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

Peak performance is skyrocketing
� In 1990s, peak performance increased 100x; in

2000s, it will increase 1000x
However

� Efficiency for many science applications declined
from 40-50% on the vector supercomputers of
1990s to as little as 5-10% on parallel
supercomputers of today

Peak performance is skyrocketing
� In 1990s, peak performance increased 100x; in

2000s, it will increase 1000x
However

� Efficiency for many science applications declined
from 40-50% on the vector supercomputers of
1990s to as little as 5-10% on parallel
supercomputers of today

0.1

1

10

100

1,000

2000 2004

Te
ra

flo
ps

1996

Performance
Gap

Peak Performance

Real Performance

• An expanded Framework for the Advanced Computational
Testing and Simulation Toolkit,
http://acts.nersc.gov/documents/Proposal.pdf

• The Advanced Computational Testing and Simulation
(ACTS) Toolkit. Technical Report LBNL-50414.

• A First Prototype of PyACTS. Technical Report LBNL-53849.
• ACTS - A collection of High Performing Tools for Scientific

Computing. Technical Report LBNL-53897.
• The ACTS Collection: Robust and high-performance tools for

scientific computing. Guidelines for tool inclusion and
retirement. Technical Report LBNL/PUB-3175.

• An Infrastructure for the creation of High End Scientific and
Engineering Software Tools and Applications. Technical
Report LBNL/PUB-3176.

ReferencesReferences

acts-support@nersc.gov
http://acts.nersc.gov

To appear: two journals
featuring ACTS Tools.

To appear: two journals
featuring ACTS Tools.

• How Can ACTS Work for you?,
http://acts.nersc.gov/events/Workshop2000

• Solving Problems in Science and Engineering,
http://acts.nersc.gov/events/Workshop2001

• Robust and High Performance Tools for Scientific Computing,
http://acts.nersc.gov/events/Workshop2002

• Robust and High Performance Tools for Scientific Computing,
http://acts.nersc.gov/events/Workshop2003

• The ACTS Collection: Robust and High Performance
Libraries for Computational Sciences, SIAM PP04
http://www.siam.org/meetings/pp04

• New Methods for Developing Peta-scalable Codes, PSC
http://www.psc.edu/training/PPS_May04

Tutorials and WorkshopsTutorials and Workshops
• FY 2002, http://acts.nersc.gov/documents/Report2002.pdf
• FY 2003-1, http://acts.nersc.gov/documents/Report2003-1.pdf
• FY 2003-2, http://acts.nersc.gov/documents/Report2003-2.pdf

Progress ReportsProgress Reports

http://acts.nersc.govhttp://acts.nersc.gov

Tool descriptions,
installation

details, examples,
etc

Agenda,
accomplishments,

conferences,
releases, etc

Goals and other
relevant information

Points of
contact

Search
engine

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers
like NERSC:

• Reduce user’s code development
time that sums up in more
production runs and faster and
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and

distribution of high performance
computing expertise

• Provide better scientific parameters
for procurement and
characterization of specific user
needs

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers
like NERSC:

• Reduce user’s code development
time that sums up in more
production runs and faster and
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and

distribution of high performance
computing expertise

• Provide better scientific parameters
for procurement and
characterization of specific user
needs

See also: http://acts.nersc.gov/documentsSee also: http://acts.nersc.gov/documents

